Random driven fast waves in coronal loops I. Without coupling to Alfvén waves

نویسندگان

  • A. De Groof
  • W. J. Tirry
  • M. Goossens
چکیده

In this paper we study the time evolution of fast MHD waves in a coronal loop driven by footpoint motions in linear ideal MHD. We restrict the analysis to footpoint motions polarized normal to the magnetic flux surfaces such that the fast waves are driven directly. By supposing the azimuthal wave number ky to be zero, the fast waves are decoupled from the Alfvén waves. As a first step to real stochastic driving, we consider the loop to be driven by a train of identical pulses with random time intervals in between. The solution is written as a superposition of eigenmodes whose excitation is determined by the time dependence of the footpoint motion through a convolution and by the spatial dependence of the footpoint motion through a scalar product. An important result from the simulations is that the amount of kinetic energy associated with the body modes is much larger than the amount corresponding to the leaky modes. This means that most of the input energy is stored within the loop. For ky / = 0, body modes can resonantly couple to Alfvén waves at certain magnetic surfaces and hence the energy of the body modes can then be dissipated around the resonant magnetic surfaces. Using a gamma distribution for the time intervals between the successive pulses, we analytically derive a relation between the mean value of the kinetic energy contribution of each eigenmode, the eigenfrequency, the number of pulses and the width of the pulses. The larger the variance of the distribution, the less the power spectrum reveals fine structure, peaks around certain preferred frequencies. The analytical results confirm the output from the numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomly driven fast waves in coronal loops II. with coupling to Alfvén waves

We study the time evolution of fast magnetosonic and Alfvén waves in a coronal loop driven by random footpoint motions. The footpoint motions are assumed to be polarized normal to the magnetic flux surfaces in linear ideal MHD. De Groof et al. (1998) (Paper I) showed that the input energy is mainly stored in the body modes when the fast waves are decoupled from the Alfvén waves. Hence driving a...

متن کامل

Direct excitation of resonant torsional Alfvén waves by footpoint motions

The present paper studies the heating of coronal loops by linear resonant Alfvén waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only torsional Alfvénwaves are excited. For this subclass of footpointmotions, the Alfvén and cusp singularit...

متن کامل

On a source of Alfvén waves heating the solar corona

Studies of the origin of coronal heating and acceleration of the solar wind invoke high-frequency Alfvén waves. Here we suggest a source for such waves associated with twisted magnetic loops emerging on the solar surface and reconnecting with the open field. We identify the loops with the ephemeral regions (small-scale bipoles) observed by ground-based instruments and by SOHO. To characterize t...

متن کامل

Coronal heating and wind acceleration by nonlinear Alfvén waves – global simulations with gravity, radiation, and conduction

We review our recent results of global onedimensional (1-D) MHD simulations for the acceleration of solar and stellar winds. We impose transverse photospheric motions corresponding to the granulations, which generate outgoing Alfvén waves. We treat the propagation and dissipation of the Alfvén waves and consequent heating from the photosphere by dynamical simulations in a self-consistent manner...

متن کامل

Resonant Alfvén waves in coronal arcades driven by footpoint motions

X-ray spectroscopy performed from different astronomical spacecrafts has shown that the solar corona is structured by magnetic fields having the shape of loops and arcades. These structures are formed by stretching and reconnection of magnetic fields, and remain stable from days to weeks. Also, sporadic or periodic brightenings of such structures have been detected in UV and soft X-ray observat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998